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Abstract. The homogeneous single-speciés- A £ 0 reaction with ballistic reactants and

a binary-velocity distribution is solved in the case of equal initial densities of particles with
positive and negative velocities. Previous studies have considered the model when the pair reaction
probability, p, is one. Here the long-time behaviour of the density decay is solved exactly in one
dimension for genera. It is shown that, in contrast to recent numerical studies, the decay of the
density at long times is a universal quantity independent of the reaction probability.

1. Introduction

The dynamics of reacting particles is a characteristic example of systems far from equilibrium.
They appear in a broad spectrum of phenomena ranging from chemical reactions to exciton
dynamics. Often, the precise mechanism of the reaction does not affect the macroscopic
behaviour, which is dictated by a small number of parameters. Typically these are the number of
reacting species and the type of motion these species perform. Many simple reaction processes
have been studied extensively and found to exhibit a variety of interesting phenomena such as
spontaneous symmetry breaking [1] and pattern formation [2].

One reaction which has received considerable attention is the single-species annihilation

reactionA + A % 0, with p a reaction probability or rate. When the mean free path of the
reactants is much less than the inter-reactant distance it is appropriate to model the particles as
diffusive. This case has been studied extensively [3-8]. It was found that in two dimensions
and below the late-time decay of the density as a function of time is different from the one
predicted by a mean-field approximation. Moreover, the decay of the density is a universal
quantity which depends only on the diffusion constant and is independent of the reactjen rate
When the mean free path of the reactants is much larger than the inter-reactant distance it
is appropriate to model the motion of the particles as ballistic. By ballistic motion it is meant
that particles move deterministically with constant velocity between collisions. Most of the
studies of such processes have been performed on one-dimensional models where patrticles
always react upon contact. This implies that once an initial condition is chosen, the complete
time evolution of the system is known: the only source of noise arises from the initial particle
distribution. The simplest of these models, which has inspired much work, was introduced by
Elskens and Frish [9] and independently by Krug and Spohn [10]. The modelis a homogeneous
binary-velocity model which exhibits an exponential decay of the density to its asymptotic
value when the initial densities of particles with positive and negative velocities are unequal.
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However, a more interesting behaviour is found when these initial densities are equal. In this
case the decay of the density at long times was found to have the (non-mean-field) algebraic
decayp ~ t~%2. Other initial-velocity distributions have also been studied [11-16].

In contrast to these models, the study of one-dimensional ballistic systems with general
reaction probability # 1is much less explored. However, recently a particular form of initial
conditions appropriate for studying reaction fronts was solved exactly [17] for general reaction
probability. The solution demonstrates a universal behaviour at late times with respect to the
reaction probabilityp.

In this context, the problem of the homogeneous binary-velocity model with a general
reaction probability has been long-standing. In this paper the model is solved exactly in
one dimension for the general reaction probabijity> 0 when the densities of particles
with positive and negative velocities aggual The general reaction probability introduces
stochasticity into the time evolution of the system in addition to the noise originating from the
initial-velocity distribution.

Recent numerical studies [18,19] have indicated that at long times the density decays as
o ~ t~* whereq varies between.6 and 077, depending on the reaction probability. Here itis
shown that this is an artifact of the numerics which have not reached the asymptotic behaviour.
In fact, for any non-zero reaction probability the density decays at late times-ad /%/?,
whereA is a universal amplitude independent of the reaction probahilityhe dependence
on p enters only in terms of @—¥/2).

The paper is organized as follows: in section 2, the model is defined and known results
are reviewed. In section 3 the calculation strategy for the density decay is introduced and then
carried out in sections 4. Finally, section 5 concludes with a discussion of the results.

2. The model

The model comprises an infinite line upon which particles are placed atrtimae0 such
that their positions have a Poissonian distribution with dengjtyEach particle is assigned,
with equal probability, a velocity & (right moving) or—c (left moving), which determines
the trajectories the particles follow until reacting. When two particles meet, either a mutual
annihilation occurs with probability = 1 — ¢, or the particles pass through each other with
probability g. Alternatively, the particles can be thought of as bouncing elastically off each
other with probabilityg or annihilating with probabilityp. Note that in this model both the
initial-velocity distribution and the reaction probability act as sources of noise, whereas in the
p = 1 case solved in [9] only the former acts as a source of noise.

The mean-field equations of the model have already been considered in [9], and are given
by

dog" = d,0)'" = —pcoyFol'" 1)

whereo¥F ando¥* are the densities of left- and right-moving particles, respectively. In the
long-time limit these equation give

1
MF _ MF _, _— 2
Qg Qr et (2
predicting that the density decay is a function of the reaction probability and the particle
velocity but independent of the initial density. However, this prediction is wrong and the exact
solution withp = 1 [9] at long times yields the density decay

_ -3/2
® = Crooe) 2 +0O(t™%). 3)
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Figure 1. An example of a specific event in whidb, (R, L) = Pg(2, 2). A black filled circle
represents two particles which have reacted while a grey filled circle represents particles which
have not reacted.

The difference between the mean-field solution and the exact behaviour is due to the fact that the
former ignores the fluctuations due to the initial particle distribution. The correct density decay
can be understood from the following qualitative argument. Consider the density fluctuations
in a domain of lengtif. The typical fluctuations in the difference of the number of left- and
right-moving particles inside the domaimig'/2, After atimeoct only the residual fluctuation
will remain, so that the densitywill be oc¢~Y/2. Re-expressingas a function of one obtains
the correct density-decay exponentc t /2,

In the following the model is solved exactly in the long-time limit for general @ < 1.
It will be shown that at long times the decay of the density is surprisingly given by equation (3).
Thisimplies that both the exponent characterizing the decay of the density and the amplitude are
universal quantitieBxdependentf the reaction probability. The dependence of the density
decay onp enters only as corrections of(©0%2). This universality can be understood in the
framework of the simple argument given above: due to the ballistic motion of the particles, at
long times their paths intersect so many times that the effective reaction probability becomes
one.

3. Calculation strategy

Let P,(R, L) be the probability that after a group efparticles (denoted by particle 1 to
according to their position along the line) have interacted with each akharg moving in

the positive (right) direction anfl are moving in the negative (left) direction. An example of
such a specific event where = L = 2 is given in figure 1. Note thak,(R, L) only takes

into account reactions within the specifigparticles under consideration and tiat L < n.

To obtain the density we first construct recursion relations for the probaBjjit®, L). As

will be shown the recursion relations do not have to be solved explicitly in order to obtain the
final solution.

Next, consider a particle which at time= 0 is the closest particle to the left of particle 1
and assume that this particle is right moving. Averaging over initial-velocity distributions and
the possible reactions of particles2l . ., n, the probability of this particle to survive after
having a chance to interact with theparticles is given by

n n—L

Pm) =7 q" Y PR, L) 4
L=0 R=0

where the factog ” is assigned wheh particles are moving left. Using the recursion relations
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Figure 2. A graphical illustration of the construction of the recursion relation®¥aR, L). Here
the first and second terms of equation (6) are illustrated.

for P,(R, L) one can evaluate this quantity exactly in the long-time limit using methods which
will be described later.

To obtain the decay of the density consider the average number of partigleajth
which a given patrticle collides with up to timre Due to the ballistic motion of the particles
t is given byr,/2c, wherer, is the average distance from the particle and the last (average)
particle it meets at time Also, for largem, this distance is given by, /0o as a consequence
of the central limit theorem applied to the initial Poissonian distribution, sorthat 2cooz.
The density at time is then given by

o(t) = P(2coot) 5)

where that fact that the probability of a right-moving particle to survivés,), at timer is
equal to that of a left-moving particle by symmetry was usedt.
Inthe following the recursion relations f&, (R, L) will be used with equations (4) and (5)
to obtain the decay of the density at late times. It will be shown that the late-time decay of the
density is independent ¢f and is given by

— -3/2
Q - (ﬂQOCt)l/Z + O(t ) (6)

The quantities which determine the late-time behaviour are the initial density and the particle
velocity. Both the exponent characterizing the decay and the amplitude are independent of the
reaction probability.

4. Calculation of the density

To construct recursion relations féy, (R, L) consider a group of + 1 particles and a group
of n particles. Using figure 2 one can write

Pu1(R L) = 2¢"P,(R,L - D)+ 3P, (R—1L L)+ 31— ¢®™HP(R+ 1 L). (7

On the right-hand side the first term is the probability that the particle labelled is left
moving and has not interacted with any of the right-moving particles, the second term is the
probability that the particle is right moving and the last term is the probability that it is left
moving and has interacted with one of the right-moving particles. The boundary conditions
are given by thee = 0 group of particleo(R, L) = 8.05L.0

T This is strictly true only whef(n) is a power law (see [9]).
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The next calculation steps rely heavily on methods which have recently been introduced to
obtain exact results for the partially asymmetric exclusion process [20, 21]. These igvolve
numbers ang-deformed Hermite polynomials [22—24] and an in depth account of the methods
can be found in [20, 21]. In what follows a list of definition and identities which are needed
for the calculation will be presented where appropriate.

A ¢-shifted factorial is defined fdg| < 1 through

n—1
(@: q) = [ [ = agh. ®)
k=0

Then — oo limit of this product is written asa; g)- and converges whelg| < 1 for all
a € C. Since products ofi-shifted factorials appear often it is common to introduce the

notation
(ag, az, ..., ax; @)n = (a1; @)n(@2; @)n - . . (ar; @n
(ar, az, ..., a1 @oo = (a15 §)oo(A2; @)oo - - - (Ak; §)oo-

9)

A g-deformed binomial (often called a Gaussian polynomial) is defined through

(n) _ (45 D (10)
m), (@ Dn(q: @n-m

and in the limity — 1 gives the binomia(").
With these definitions the recursion relation (R, L) may be broughtinto a symmetric
formin R andL by introducing

R+L

Py(R. L) = (%)”( .

> T,(R+L) (11)
q

whereT, (s) satisfies the recursion relation
Tusa(s) = To(s — D+ (1 — ¢ HT(s + 1)
TO(S) = 83,0'

To obtain the density we consid@x(n) at evenn. The case of odd is similar and will
not be discussed here. Since particles react in pairs, .evmplies thatR + L is also even.
Using this with equations (4) and (11) one has

n n—L R+1L
m):(g)ﬂquZ( N )TH(R+L)
q

L= R=0

0
n/2 n—2k _ 2k .
=" Y T(n—2)Y. (” l. )q' (13)
i=0 q

k=0,1,...

12)

where in the last step the terms were rearranged in groups with thelsame 2k).
To proceed note the relation

n/2 n—2k n— 2k . .
(b+b)'= > Tn—2k) ) ( i ) N )"+ (14)
k=0,1,... i=0 q

which was obtained by Derrida and Mallick [25] in the context of the partially asymmetric
exclusion process. HerE (s) satisfies the recursion relation equation (12) arahdb' are
g-deformed harmonic oscillator operators which satisfy

bb" —gb’h=1—4. (15)
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When acting on an orthonormal Hilbert ‘energy’ bagis n = 0, 1, .. ., they give
b'ln) = v/1—g"1in +1)
blny =+/1—q"In —1).

The coherent state of the operatbrsndb ' (often referred to ag-coherent states) is given by

(16)

wk
_ Z 17
w) =5 VG D ) "

and satisfies
blw)) = wlw)) ((wlb" = w({wl. (18)
Using the above relations one can easily show that

({gl(®+bN)"|1))
PO =y 19
Note that wheny = 1, so that no interactions occur,andb’ commute and the expression
reduces to the expect@dn) = 1. To calculate this an analogue of the harmonic oscillator real
space representation is used. For our purposes it is sufficient to note that this basis, denoted

by | P(cosh)), satisfies

(bT +b)| P(cosH)) = 2 cosH| P(cosh)) (20)
wheref € [0, 7] and that the projection of this basis on #p&oherent state is given by
1
P(cosd)) = : : ) 21
({w[P(cost)) (W7, we 7: g) (21)
The completeness relation of the basis is given by
1= f | P(cosh))v(cosh) (P (cosh)| (22)
0
where the weighting function(cos) is
0 o—2i0.
v(coss) = @€ ; 25y (23)
JT
Using these equation (19) can be rewritten as
Py = f ({(q| P(cosh))v(cosh)(2cosh)" (P (cosh)|1)) 4 24)
0 2'({qI1))

which after doubling the range of integrationéofrom 0 to 2r and using equation (21) gives
1 1 d s 2a 723 ) 1y
P(n) = 5 — % S NCIE SN D <z + -) . (25)
21 47i((qI1D)) J z (2. z27Y @oo(92. 927Y @) o z
Here the substitution = €’ was made.

Finally, to obtain the asymptotic behaviour the method of steepest decent is used [26].
Noting that [22]
o n 1

q
1 == =
Halt) ;(Q;Q)n (45 oo
the final result is given by

Pn) = ,/% +0(n~%?). (27)

Using (5) the exact density decay at long times is then

00 = (o ety 72

A more lengthy calculation which will not be presented here shows that the amplitud&of
is not universal due to an explicit dependenceyon

(26)

+ 0~ ¥?). (28)



Ballistic annihilation with a general reaction probability 2371
5. Discussion

In this paper the single specids+ A £ 0 reaction model with a binary-velocity distribution

was solved exactly, for general reaction probabilitywhen the densities of right- and left-
moving particles are equal. It was shown that the density decay is a universal quantity which is
independent of the reaction probabilipy,at long times. In the language of the renormalization
group this means that the noise introduced by the reaction probability is irrelevant. An
intuitive explanation of this result was given. Based on this it is expected that this universality
would also be found in the recently studied case of ballistic reactions near an impenetrable
boundary [27].

One of the unresolved issues for ballistic reactants is that of dimensions larger than one
where very little is known. Another interesting question is the effect of noise induced by
quenched disorder on the density decay. Such systems have been recently considered in single-
species reactions when the dynamics of the reactants are diffusive [28,29] and interesting effects
on the density decay were found.

Acknowledgments

| would like to thank David Mukamel and Magsu E Richardson for many useful comments
and critical reading of the manuscript. | have also benefited from discussion with Martin Evans
and am especially grateful to Richard A Blythe for pointing out [25] and introducing me to
the methods of calculation.

References

[1] Bramson M and LebowitJ L 1991J. Stat. Phys62 297
Bramson M and LebowitJ L 1991J. Stat. Phys65941
[2] Chopard B, Droz M, Magnin J, &z Z and Zrinyi M 1999. Phys. ChemA 1031432
[3] Toussaint D and Wilczek F 198B Chem. Phys/8
[4] PelitiL 1986J. Phys. A: Math. Gerl9 L365
[5] Spoug JL 1988Phys. Rev. Let60871
[6] Lushnikos A A 1986 Sov. Phys.—JETB4 811
[7] Lushnikov A A 1987 Phys. Lett120135
[8] Lee B P 1994]. Phys. A: Math. GerR7 2633
[9] ElskensY and FridtH L 1985Phys. RevA 313812
[10] Krug Jand Sphon H 1988hys. RevA 384271
[11] Privman V (ed) 1997Nonequilibrium Statistical Mechanics in One Dimensi@ambridge: Cambridge
University Press)
[12] Droz M, Rey P A, Frachebourg L and Piasecki J 199fys. RevE 515541
[13] Droz M, Rey P A, Frachebourg L and Piasecki J 19%ys. Rev. Let75 160
[14] Krapivsky P L, Redner S and Leyvraz F 199Bys. RevE 513977
[15] Piasecki J, ReP A and Droz M 1996°hysicaA 229515
[16] Rey P A, Droz M and Piasecki J 199%ys. Re\vE 59126
[17] Richardse M J E1997J. Stat. Phys89777
[18] Shes W S 1996J. Phys. Chenil0017 446
[19] Shes W S and Chen H'Y 1998. Chem. Physl088394
[20] Blythe R A, Evans M R, Colaiori F and EsslEé H L 2000J. Phys. A: Math. Ger8B32313 (this issue)
[21] Sasamoto T 1999. Phys. A: Math. Ger82 7109
[22] Gasper G and Rahman M 198@sic Hypergeometric Seri¢€ambridge: Cambridge University Press)
[23] Macfarlare A J 1989]. Phys. A: Math. Ger2 4581
[24] Atakishiyes N M and Feinsliver P 1996. Phys. A: Math. Ger29 1659
[25] Derrida B and Mallick K 19973. Phys. A: Math. Ger80 1031



2372 Y Kafri

[26] Seeforexample Bend€ M and Orszg S A 1978Advanced Mathematical Methods For Scientists and Engineers
(New York: McGraw-Hill)
[27] KafriY and Richardsn M J E1999J. Phys. A: Math. Ger82 3253
Richardsa M J E andKafri Y 1999 Phys. RevE 59 R4725
[28] Richardsa M J E andCardy J 1999). Phys. A: Math. Ger824035
[29] Pak JM and Deem M W 199®hys. Re\E 57 3618
Churg W J and Deem M W 199PhysicaA 265486



