
Exact solution of homogeneous ballistic annihilation with a general reaction probability

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 2365

(http://iopscience.iop.org/0305-4470/33/12/304)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.33 (2000) 2365–2372. Printed in the UK PII: S0305-4470(00)09615-3

Exact solution of homogeneous ballistic annihilation with a
general reaction probability

Y Kafri
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100,
Israel

Received 16 November 1999

Abstract. The homogeneous single-speciesA + A
p→ 0 reaction with ballistic reactants and

a binary-velocity distribution is solved in the case of equal initial densities of particles with
positive and negative velocities. Previous studies have considered the model when the pair reaction
probability,p, is one. Here the long-time behaviour of the density decay is solved exactly in one
dimension for generalp. It is shown that, in contrast to recent numerical studies, the decay of the
density at long times is a universal quantity independent of the reaction probability.

1. Introduction

The dynamics of reacting particles is a characteristic example of systems far from equilibrium.
They appear in a broad spectrum of phenomena ranging from chemical reactions to exciton
dynamics. Often, the precise mechanism of the reaction does not affect the macroscopic
behaviour, which is dictated by a small number of parameters. Typically these are the number of
reacting species and the type of motion these species perform. Many simple reaction processes
have been studied extensively and found to exhibit a variety of interesting phenomena such as
spontaneous symmetry breaking [1] and pattern formation [2].

One reaction which has received considerable attention is the single-species annihilation

reactionA + A
p→ 0, with p a reaction probability or rate. When the mean free path of the

reactants is much less than the inter-reactant distance it is appropriate to model the particles as
diffusive. This case has been studied extensively [3–8]. It was found that in two dimensions
and below the late-time decay of the density as a function of time is different from the one
predicted by a mean-field approximation. Moreover, the decay of the density is a universal
quantity which depends only on the diffusion constant and is independent of the reaction ratep.

When the mean free path of the reactants is much larger than the inter-reactant distance it
is appropriate to model the motion of the particles as ballistic. By ballistic motion it is meant
that particles move deterministically with constant velocity between collisions. Most of the
studies of such processes have been performed on one-dimensional models where particles
always react upon contact. This implies that once an initial condition is chosen, the complete
time evolution of the system is known: the only source of noise arises from the initial particle
distribution. The simplest of these models, which has inspired much work, was introduced by
Elskens and Frish [9] and independently by Krug and Spohn [10]. The model is a homogeneous
binary-velocity model which exhibits an exponential decay of the density to its asymptotic
value when the initial densities of particles with positive and negative velocities are unequal.
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However, a more interesting behaviour is found when these initial densities are equal. In this
case the decay of the density at long times was found to have the (non-mean-field) algebraic
decay% ∼ t−1/2. Other initial-velocity distributions have also been studied [11–16].

In contrast to these models, the study of one-dimensional ballistic systems with general
reaction probabilityp 6= 1 is much less explored. However, recently a particular form of initial
conditions appropriate for studying reaction fronts was solved exactly [17] for general reaction
probability. The solution demonstrates a universal behaviour at late times with respect to the
reaction probabilityp.

In this context, the problem of the homogeneous binary-velocity model with a general
reaction probability has been long-standing. In this paper the model is solved exactly in
one dimension for the general reaction probabilityp > 0 when the densities of particles
with positive and negative velocities areequal. The general reaction probability introduces
stochasticity into the time evolution of the system in addition to the noise originating from the
initial-velocity distribution.

Recent numerical studies [18, 19] have indicated that at long times the density decays as
% ∼ t−α whereα varies between 0.5 and 0.77, depending on the reaction probability. Here it is
shown that this is an artifact of the numerics which have not reached the asymptotic behaviour.
In fact, for any non-zero reaction probability the density decays at late times as% ∼ A/t1/2,
whereA is a universal amplitude independent of the reaction probabilityp. The dependence
onp enters only in terms of O(t−3/2).

The paper is organized as follows: in section 2, the model is defined and known results
are reviewed. In section 3 the calculation strategy for the density decay is introduced and then
carried out in sections 4. Finally, section 5 concludes with a discussion of the results.

2. The model

The model comprises an infinite line upon which particles are placed at timet = 0 such
that their positions have a Poissonian distribution with density%0. Each particle is assigned,
with equal probability, a velocity +c (right moving) or−c (left moving), which determines
the trajectories the particles follow until reacting. When two particles meet, either a mutual
annihilation occurs with probabilityp = 1− q, or the particles pass through each other with
probabilityq. Alternatively, the particles can be thought of as bouncing elastically off each
other with probabilityq or annihilating with probabilityp. Note that in this model both the
initial-velocity distribution and the reaction probability act as sources of noise, whereas in the
p = 1 case solved in [9] only the former acts as a source of noise.

The mean-field equations of the model have already been considered in [9], and are given
by

∂t%
MF
R = ∂t%MFL = −pc%MFR %MFL (1)

where%MFL and%MFR are the densities of left- and right-moving particles, respectively. In the
long-time limit these equation give

%MFR = %MFL ∼ 1

pct
(2)

predicting that the density decay is a function of the reaction probability and the particle
velocity but independent of the initial density. However, this prediction is wrong and the exact
solution withp = 1 [9] at long times yields the density decay

% = 1

(π%0ct)1/2
+ O(t−3/2). (3)
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Figure 1. An example of a specific event in whichPn(R,L) = P8(2, 2). A black filled circle
represents two particles which have reacted while a grey filled circle represents particles which
have not reacted.

The difference between the mean-field solution and the exact behaviour is due to the fact that the
former ignores the fluctuations due to the initial particle distribution. The correct density decay
can be understood from the following qualitative argument. Consider the density fluctuations
in a domain of length̀ . The typical fluctuations in the difference of the number of left- and
right-moving particles inside the domain is∝`1/2. After a time∝` only the residual fluctuation
will remain, so that the density%will be∝`−1/2. Re-expressing̀as a function oft one obtains
the correct density-decay exponent% ∝ t−1/2.

In the following the model is solved exactly in the long-time limit for general 0< p 6 1.
It will be shown that at long times the decay of the density is surprisingly given by equation (3).
This implies that both the exponent characterizing the decay of the density and the amplitude are
universal quantitiesindependentof the reaction probabilityp. The dependence of the density
decay onp enters only as corrections of O(t−3/2). This universality can be understood in the
framework of the simple argument given above: due to the ballistic motion of the particles, at
long times their paths intersect so many times that the effective reaction probability becomes
one.

3. Calculation strategy

Let Pn(R,L) be the probability that after a group ofn particles (denoted by particle 1 ton
according to their position along the line) have interacted with each other,R are moving in
the positive (right) direction andL are moving in the negative (left) direction. An example of
such a specific event whereR = L = 2 is given in figure 1. Note thatPn(R,L) only takes
into account reactions within the specificn particles under consideration and thatR +L 6 n.
To obtain the density we first construct recursion relations for the probabilityPn(R,L). As
will be shown the recursion relations do not have to be solved explicitly in order to obtain the
final solution.

Next, consider a particle which at timet = 0 is the closest particle to the left of particle 1
and assume that this particle is right moving. Averaging over initial-velocity distributions and
the possible reactions of particles 1, 2 . . . , n, the probability of this particle to survive after
having a chance to interact with then particles is given by

P(n) =
n∑

L=0

qL
n−L∑
R=0

Pn(R,L) (4)

where the factorqL is assigned whenL particles are moving left. Using the recursion relations
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Figure 2. A graphical illustration of the construction of the recursion relations forPn(R,L). Here
the first and second terms of equation (6) are illustrated.

for Pn(R,L) one can evaluate this quantity exactly in the long-time limit using methods which
will be described later.

To obtain the decay of the density consider the average number of particles,mt , with
which a given particle collides with up to timet . Due to the ballistic motion of the particles
t is given byrt/2c, wherert is the average distance from the particle and the last (average)
particle it meets at timet . Also, for largemt this distance is given bymt/%0 as a consequence
of the central limit theorem applied to the initial Poissonian distribution, so thatmt = 2c%0t .
The density at timet is then given by

%(t) = P(2c%0t) (5)

where that fact that the probability of a right-moving particle to survive,P(mt), at timet is
equal to that of a left-moving particle by symmetry was used†.

In the following the recursion relations forPn(R,L)will be used with equations (4) and (5)
to obtain the decay of the density at late times. It will be shown that the late-time decay of the
density is independent ofp and is given by

% = 1

(π%0ct)1/2
+ O(t−3/2). (6)

The quantities which determine the late-time behaviour are the initial density and the particle
velocity. Both the exponent characterizing the decay and the amplitude are independent of the
reaction probability.

4. Calculation of the density

To construct recursion relations forPn(R,L) consider a group ofn + 1 particles and a group
of n particles. Using figure 2 one can write

Pn+1(R,L) = 1
2q

RPn(R,L− 1) + 1
2Pn(R − 1, L) + 1

2(1− qR+1)Pn(R + 1, L). (7)

On the right-hand side the first term is the probability that the particle labelledn + 1 is left
moving and has not interacted with any of the right-moving particles, the second term is the
probability that the particle is right moving and the last term is the probability that it is left
moving and has interacted with one of the right-moving particles. The boundary conditions
are given by then = 0 group of particlesP0(R,L) = δR,0δL,0.

† This is strictly true only whenP(n) is a power law (see [9]).
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The next calculation steps rely heavily on methods which have recently been introduced to
obtain exact results for the partially asymmetric exclusion process [20, 21]. These involveq-
numbers andq-deformed Hermite polynomials [22–24] and an in depth account of the methods
can be found in [20, 21]. In what follows a list of definition and identities which are needed
for the calculation will be presented where appropriate.

A q-shifted factorial is defined for|q| < 1 through

(a; q)n =
n−1∏
k=0

(1− aqk). (8)

Then → ∞ limit of this product is written as(a; q)∞ and converges when|q| < 1 for all
a ∈ C. Since products ofq-shifted factorials appear often it is common to introduce the
notation

(a1, a2, . . . , ak; q)n = (a1; q)n(a2; q)n . . . (ak; q)n
(a1, a2, . . . , ak; q)∞ = (a1; q)∞(a2; q)∞ . . . (ak; q)∞.

(9)

A q-deformed binomial (often called a Gaussian polynomial) is defined through(
n

m

)
q

= (q; q)n
(q; q)m(q; q)n−m (10)

and in the limitq → 1 gives the binomial
(
n

m

)
.

With these definitions the recursion relation forPn(R,L)may be brought into a symmetric
form inR andL by introducing

Pn(R,L) = ( 1
2)
n

(
R +L

L

)
q

Tn(R +L) (11)

whereTn(s) satisfies the recursion relation

Tn+1(s) = Tn(s − 1) + (1− qs+1)Tn(s + 1)

T0(s) = δs,0.
(12)

To obtain the density we considerP(n) at evenn. The case of oddn is similar and will
not be discussed here. Since particles react in pairs, evenn implies thatR + L is also even.
Using this with equations (4) and (11) one has

P(n) = ( 1
2)
n

n∑
L=0

qL
n−L∑
R=0

(
R +L

L

)
q

Tn(R +L)

= ( 1
2)
n

n/2∑
k=0,1,...

Tn(n− 2k)
n−2k∑
i=0

(
n− 2k

i

)
q

qi (13)

where in the last step the terms were rearranged in groups with the sameT (n− 2k).
To proceed note the relation

(b + b†)n =
n/2∑

k=0,1,...

Tn(n− 2k)
n−2k∑
i=0

(
n− 2k

i

)
q

(b†)i(b)n−k−i (14)

which was obtained by Derrida and Mallick [25] in the context of the partially asymmetric
exclusion process. HereTn(s) satisfies the recursion relation equation (12) andb andb† are
q-deformed harmonic oscillator operators which satisfy

bb†− qb†b = 1− q. (15)
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When acting on an orthonormal Hilbert ‘energy’ basis|n〉, n = 0, 1, . . . , they give

b†|n〉 =
√

1− qn+1|n + 1〉
b|n〉 =

√
1− qn|n− 1〉. (16)

The coherent state of the operatorsb andb† (often referred to asq-coherent states) is given by

|w〉〉 =
∞∑
k=0

wk√
(q; q)n

|n〉 (17)

and satisfies

b|w〉〉 = w|w〉〉 〈〈w|b† = w〈〈w|. (18)

Using the above relations one can easily show that

P(n) = 〈〈q|(b + b†)n|1〉〉
2n〈〈q|1〉〉 . (19)

Note that whenq = 1, so that no interactions occur,b andb† commute and the expression
reduces to the expectedP(n) = 1. To calculate this an analogue of the harmonic oscillator real
space representation is used. For our purposes it is sufficient to note that this basis, denoted
by |P(cosθ)〉, satisfies

(b† + b)|P(cosθ)〉 = 2 cosθ |P(cosθ)〉 (20)

whereθ ∈ [0, π ] and that the projection of this basis on theq-coherent state is given by

〈〈w|P(cosθ)〉 = 1

(weiθ , we−iθ ; q)∞ . (21)

The completeness relation of the basis is given by

1=
∫ π

0
|P(cosθ)〉ν(cosθ)〈P(cosθ)| (22)

where the weighting functionν(cosθ) is

ν(cosθ) = (q, e2iθ , e−2iθ ; q)∞
2π

. (23)

Using these equation (19) can be rewritten as

P(n) =
∫ π

0

〈〈q|P(cosθ)〉ν(cosθ)(2 cosθ)n〈P(cosθ)|1〉〉
2n〈〈q|1〉〉 dθ (24)

which after doubling the range of integration ofθ from 0 to 2π and using equation (21) gives

P(n) = 1

2n
1

4π i〈〈q|1〉〉
∮

dz

z

(q, z2, z−2; q)∞
(z, z−1; q)∞(qz, qz−1; q)∞

(
z +

1

z

)n
. (25)

Here the substitutionz = eiθ was made.
Finally, to obtain the asymptotic behaviour the method of steepest decent is used [26].

Noting that [22]

〈〈q|1〉〉 =
∞∑
n=0

qn

(q; q)n =
1

(q; q)∞ (26)

the final result is given by

P(n) =
√

2

πn
+ O(n−3/2). (27)

Using (5) the exact density decay at long times is then

%(t) = 1

(π%0ct)1/2
+ O(t−3/2). (28)

A more lengthy calculation which will not be presented here shows that the amplitude oft−3/2

is not universal due to an explicit dependence onq.
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5. Discussion

In this paper the single speciesA +A
p→ 0 reaction model with a binary-velocity distribution

was solved exactly, for general reaction probabilityp, when the densities of right- and left-
moving particles are equal. It was shown that the density decay is a universal quantity which is
independent of the reaction probability,p, at long times. In the language of the renormalization
group this means that the noise introduced by the reaction probability is irrelevant. An
intuitive explanation of this result was given. Based on this it is expected that this universality
would also be found in the recently studied case of ballistic reactions near an impenetrable
boundary [27].

One of the unresolved issues for ballistic reactants is that of dimensions larger than one
where very little is known. Another interesting question is the effect of noise induced by
quenched disorder on the density decay. Such systems have been recently considered in single-
species reactions when the dynamics of the reactants are diffusive [28,29] and interesting effects
on the density decay were found.
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